
NBS

PUBLICATIONS A111D5 5145317

^' UU U56 ^°-86-3408 1986 V19 CJNBS-P

Study of a Prototype Software
Engineering Environment

Dolores R. Wallace and D. Richard Kuhn

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

June 1986

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

QC

100

• U56

86-3408

1986

C. 2

m
research

INFORMATION

CENTER

NBSIR 86-3408

STUDY OF A PROTOTYPE SOFTWARE
ENGINEERING ENVIRONMENT

Dolores R. Wallace and D. Richard Kuhn

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

June 1986

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

STUDY of a PROTOTYPE
SOFTWARE ENGINEERING ENVIRONMENT

Dolores R. Wallace and D. Richard Kuhn

ABSTRACT
A prototype software engineering environment was studied as part of the program to

provide information to Federal agencies on software tools for improving quality and pro-

ductivity in software development and maintenance. The purpose of a software

engineering environment is to surround its users with software tools necessary for sys-

tematic development and maintenance of software. This report presents the results of

the study of the prototype software engineering environment with respect to its

features. The report also presents several factors to consider when evaluating a software

engineering environment.

KEYWORDS
documentation; extensibility; integration; maintainability; portability; programming

environment; software engineering environment; software support; software tools; user

facilities.

FOREWORD
Under the Brooks Act, the National Bureau of Standards’ Institute for Computer

Sciences and Technology (ICST) promotes the cost effective selection, acquisition, and
utilization of automatic data processing resources within Federal agencies. ICST efforts

include research in computer science and technology, direct technical assistance, and the

development of Federal standards for data processing equipment, practices, and
software.

ICST has published several documents on software tools as part of this responsibility

and the growing recognition that the use of software tools and software engineering

environments can reduce the effort necessary to develop and maintain computer

software. The guidance is designed to assist Federal agencies in automating and standar-

dizing their software development and maintenance projects.

This report presents the results of a study of an experimental software engineering

environment. It discusses the environment and its features to enable readers to gain an

understanding of how environments can aid the software development and maintenance

process. Future ICST documents will provide guidance in selecting and using software

engineering environments.

The experimental software engineering environment prototype and other commercial

products are identified in this paper for clarification of specific concepts. In no case does

such identification imply recommendation or endorsement by the National Bureau of

Standards, nor does it imply that the material identified is necessarily the best for the

purpose.

- Hi -

TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 THE TOOLPACK SUPPORT ENVIRONMENT 1

3.0 FUNCTIONALITY AND COMPLETENESS 3

4.0 EXTENSIBILITY 7

4.1 Development of a New Tool 7

4.2 Conversion to Toolpack 8

4.3 Evaluation of Conversion 8

5.0 TOOL INTEGRATION 9

6.0 USER FACILITIES 10

6.1 Command display 10

6.2 On-line documentation 10

6.3 Command syntax and abbreviation 10

6.4 Prompting 10

7.0 DOCUMENTATION 10

7.1 User Documentation 11

7.2 System Documentation 11

8.0 MAINTAINABILITY 11

8.1 Single High-Order Language 11

8.2 Coding Conventions 11

8.3 Structured Modular Software 12

8.4 Standard Data Definitions and Data Dictionary 13

9.0 PORTABILITY 13

9.1 Portable Character Set 13

9.2 Impact on Performance 13

9.3 Performance Improvements 13

10.0 RESOURCE USAGE 14

11.0 SUMMARY 15

12.0 REFERENCES 16

- iv -

LIST OF FIGURES

Figure 1. The Toolpack support environment 2

Figure 2. Toolpack tool dependencies 9

LIST OF TABLES

Table 1. Toolpack tools supplied with test version. 4

Table 2. Toolpack tools not available for evaluation. 4

Table 3. Tool Rankings from Hanson & Rosinski Study. 5

Table 4. Levels of Support Based on Capability 6

Table 5. COMPLEXITY METRIC: Toolpack Libraries. 12

Table 6. COMPLEXITY METRIC: Selected Tools. 12

Table 7. Average Module Size. 12

Table 8. I/O performance 14

- v -

1.0 INTRODUCTION
One program of the Software Engineering Group of the Institute for Computer Sci-

ences and Technology (ICST) of the National Bureau of Standards (NBS) provides infor-

mation to Federal agencies on software tools for improving quality and productivity in

software development and maintenance. A recent study involved examining and

evaluating the individual characteristics and functions of a prototype software engineer-

ing environment. Goals of this study were to provide feedback to the developers; to

gain first-hand experience with the tools and uses of environments; and to determine

factors that should be considered before purchasing a software engineering environment.

Understanding these factors may assist in assessing the need for a software engineering

environment, the type of environment needed, and the features that should be included

in the environment for a specific software project.

The software engineering environment selected for examination is the result of an

on-going research project. The goal of the project’s developers is to examine some of

the central questions confronting the would-be builder of a software development

environment by creating and studying an experimental prototype [OSTE83]. Prelim-

inary versions of this environment, called Toolpack, were released for test and evalua-

tion during 1984. ICST personnel have been involved with the Toolpack project almost

since its beginning. This reports describes features of the ICST study from November
1983 to March 1984.

Toolpack is a collaborative effort involving researchers at Argonne National Labora-

tories; Bell Communications Research, Inc.; Morristown, NJ; Jet Propulsion Laboratory;

Numerical Algorithms Group, Ltd.; Purdue University; University of Arizona at Tucson;

and the University of Colorado at Boulder. Funding in the United States has been sup-

plied by the National Science Foundation and the Department of Energy; funding in

England has been supplied by Numerical Algorithms Group, Ltd.

Under no circumstances does this report constitute an endorsement of Toolpack by
the National Bureau of Standards; nor does it imply that Toolpack is necessarily the

best product for its purpose. Toolpack is still undergoing development as a research

product. Many features described in this report are likely to be different in future ver-

sions.

2.0 THE TOOLPACK SUPPORT ENVIRONMENT
The Toolpack support environment was developed for a target community of

developers of scientific software written in FORTRAN 77 [OSTE83]. Goals of

Toolpack’s designers were to provide an effective file management system and a tool set

for the development of easily transportable code. Development activities include the

creation, editing, testing, analysis, and documentation of code.

The developers of Toolpack intended the environment to support the development

and the validation, verification and testing activities of the coding phase of the software

lifecycle. Some concepts of the environment, such as the file management system, could

be extended to support activities throughout the lifecycle.

When completed, the Toolpack environment (Figure 1) will contain the Toolpack

Interface to the Environment (TIE) and the software tools. TIE provides the interface

to the host file store and to the portable file store of Toolpack. Toolpack provides exten-

sibility by permitting users to add or remove tools. The integration system provides a

central data base of information. The information may be the source files on which some

- 1 -

software tools operate, the test data to be executed on these files, or the results of those

operations on which other tools perform their functions. Ideally these functions are tied

together by an object-oriented ’’command interpreter” that allows several functions, or

combinations of functions, to be performed by one command. This command interpreter

is still experimental and was not available for the evaluation. A ’’command executor”

that performs similar functions was provided with the version we received. The com-
mand executor allows the user to invoke one tool at a time, in a manner similar to most

interactive operating systems.

Figure 1. The Toolpack support environment.

Toolpack contains a suite of tools that are supported and integrated by TIE and the

command language. The tools and their descriptions are shown in Table 1. Toolpack

provides the tool capabilities needed for programming support:

o editor and documentation aids

o display, copy aids

o static analysis tools

o dynamic analysis tools

o a program transformer.

A compiler and link editor are not provided with Toolpack, since these programs are

operating system and machine dependent. It is relatively easy to provide access to these

host tools from Toolpack by writing a host command procedure that can be called from

the Toolpack command executor. General and specific features of the major parts of

Toolpack are discussed in the evaluation section. The tools listed in Table 2 are

scheduled to be released in the first complete version of Toolpack, but were not avail-

able for evaluation. Table 2 is included here to indicate the goal of Toolpack’s develop-

ers to achieve completeness. We used this information in our evaluation.

Our study of Toolpack is based on several criteria. Functional characteristics were

evaluated using test cases developed from our functional requirements. For other fac-

tors, we developed criteria from Toolpack’s description, from guidance suggested by

- 2 -

Federal software engineering publications, and from other technical journals. Much of

the literature on Tool pack describes features that were not available in the version that

we received. The evaluation is limited to the parts of Toolpack that were available to

us. More information on the evaluation techniques may be found in another document

[WALL86].

Our evaluation considered the following issues:

o F unctionality and Completeness

o Extensibility

o Tool integration

o User facilities

o Documentation

o Maintainability

o Portability

o Resource usage.

3.0 FUNCTIONALITY AND COMPLETENESS
The test plan for Toolpack required the execution of each software tool on sample

data consisting of FORTRAN subroutines. The sample data contain features appropri-

ate to testing the functions of each tool. The individual tools to which we had access

(Table l) performed according to the functional descriptions provided in the documenta-

tion. The syntax for their use and the format for expected outputs were consistent with

their documentation.

Information beyond functionality is needed to gauge how well a software develop-

ment environment can satisfy user expectations of increased productivity and improved

software quality. The tools selected for such an environment must be shown to be of

value. The manner in which they interact and combine are important. Finally, the total

environment must provide sufficient services so that the programmer need not leave the

environment to perform other work on the software product.

Few metrics are available for measuring the effect of tools on software productivity

and software quality. To help us determine how well Toolpack meets requirements for

individual tools and as a total environment, we incorporated the results of two separate

viewpoints into our analysis. One considers the individual worth of tools [HANS85]
while the other considers levels of total capability provided by a given tool set

[BRAN81]. The latter places value on how well the tools work together and on how
easily new tools may be added, a feature that makes initial completeness less important.

Interestingly, both studies emphasize similar sets of individual tools; many, but not all,

appear in the selection offered by Toolpack.

In the study of individual tools, Hanson and Rosinski [HANS85], of Bell Labora-

tories, used psychometric scaling techniques to assess the value that programmers place

on different types of tools. The authors of this study asked a group of experienced pro-

grammers to rate the tools according to their value in increasing productivity. The sub-

jects were also asked to judge the similarity or difference between pairs of tools. The
authors used these judgments to estimate sets of tools that are considered essential, and

to group tools that are similar and provide equal productivity improvements.

- 3 -

ISTCE - Command Executor, maintains the portable file system and schedules tools.

ISTCT - File Type Changer, changes the type of a file between direct access and sequential.

ISTDS - Declaration Standardizer, standardizes declarative parts of FORTRAN 77 program units.

ISTFD - FORTRAN Intelligent Differencer, compares token streams from two source files.

ISTFL - File Length Calculator, finds the length of a sequential file.

ISTGP - Generalized Pattern Matcher, searches multiple files for the occurrence of a regular expression.

ISTLX • FORTRAN 77 Scanner, a FORTRAN 77 lexical analyzer.

ISTMP - Macro Processor, a general macro processor that can be used for expanding Toolpack macros,
Toolpack documentation macros or any macro file.

ISTPL - Polish 77, a parameterized FORTRAN 77 ’pretty printer’.

ISTPO - Polish Option File Editor, a menu driven editor for ISTPL option files.

ISTPR - FORTRAN 77 Parser, a FORTRAN 77 parser.

ISTPT - Transform Precision, converts the precision of variables (e.g. single to double).

ISTRF - Text Formatter, a general text (as opposed to source code) formatter.

ISTSP - File Splitter, splits a file into individual FORTRAN 77 source files.

ISTSV - File Save and Restore Utility, a file archiver/restorer.

ISTTD - Text Differencer, a standard text comparison tool.

ISTVC - Version Controller, maintains separate versions of a file in an ISTVC archive file.

ISTVS - View Symbol Table, produces a brief report of the contents of the symbol table for a file.

ISTYF - Flatten ISTYP Parse Tree, converts an ISTYP format parse tree to a token stream.

ISTYP - FORTRAN 77 Parser, a FORTRAN 77 parser.

Table 1. Toolpack tools supplied with test version.

Table 3 shows the tool types and rankings in [HANS85] and lists Toolpack tools

from Tables 1 and 2 that represent each type. Tool names shown in asterisks, such as

ISTCI, were not available in the version that we tested.

ISTCI - Command Interpreter, an experimental programming environment based on the Odin command
interpreter.

ISTED - FORTRAN Aware Editor, a basic line based editor with some FORTRAN 77 awareness This

will be the vehicle for development of a language based editor.

Table 2. Toolpack tools not available for evaluation.

- 4 -

Branstad, Adrion, and Cherniavsky [BRAN81] propose levels of support that are

based on increased levels of capability. The levels, which are presented in Table 4, pro-

vide a way of gauging the total level of support provided by an environment. The

Minimal System (Dl) contains features common to most operating systems. The Basic

System (D2) augments Dl with a database and features to support the management of

code and documentation. A tool included in D2, ’’Make”, is a capability in UNDC 1 to

configure programs or documentation [FELD79]; in D2 its generic functions are con-

sidered to be essential to a fundamental set of programming tools. The Full System

(D3) completes coverage for the entire lifecycle. The Advanced System (D4) integrates

the Full System represented by D3.

Tool Relative Choice Toolpack Tool

Interactive debugger 1.00 none

Screen editor .98 *ISTED*
Subnetwork checker .97 none

Process meter .97 *NBS Analyzer*

Print file .96 *ISTCI*

Stream editor .91 ISTDS, *ISTGI*,

ISTMP, ISTPT,
ISTRF

Data dictionary .90 none

Configuration manager .90 ISTSV
Source code control .90 1STVC
Test coverage analyzer .89 *NBS Analyzer*

Auto test generator .88 none

Process monitor .88 none

Private library .88 ISTCE, *ISTCI*

Storage monitor .88 ISTCE, *ISTCI*

File comparator .84 ISTFD, ISTTD
Big file splitter .84 ISTSP
Program cross referencer .81 none

Display .79 ISTCE, *ISTCI*
Big file scanner .79 ISTGP
Source beautifier .78 ISTPL

Table 3. Tool Rankings from Hanson & Rosinski Study.

Toolpack provides most of the tools listed in Tables 3 and 4 and contains some addi-

tional tools. The test version of Toolpack had several of the D2 set of tools; the first

complete release of Toolpack is expected to contain the full D2 set of tools. Toolpack

developers did not include tools for the earlier lifecycle phases of requirements and

design which appear in D3. Effective tool integration, as considered by D4, is one of the

important features the Toolpack developers aimed to provide.

Tools not mentioned in the Hanson study but contained in the Toolpack system are

static analysis tools such as the lexical analyzer and parser. These tools, or their

equivalent, may have been assumed to be included in compilers for the Hanson study.

The Minimal System, Dl, also contains some static analysis tools (e.g., type analysis)

that Toolpack’s developers may have assumed in compilers.

'UNIX is a trademark of AT&T.

- 5 -

Standard Level

Features

Additional Support for

Critical Applications

Dl - Minimal

System

Translation

Cross-Reference; Trace

Audit; File Comparison

Optimization; Text Editing

Range Checking

Type Analysis

Assertion Checking

Formatting

D2 - Basic

System

Dl with Data Dictionary

Information Repository

Separate Compilation

Make; Version Control

Interface Analysis

Test Coverage

Data Flow Analysis

Structure Analysis

Complexity Measurement

Performance Monitor

D3 - Full

System

D2

Requirements Specification

Requirements Analysis

Design Specification

Design Analysis

Test Harness

Automated Documentation

Automated Project Control

Symbolic Evaluation

Proof of Correctness

D4 - Advanced

System

D3 with Information

Interfaces Specified and

Full Integration

Table 4. Levels of Support Based on Capability

Many of the tools rated by the Hanson programmers are for organizing and control-

ling code. In addition to code management tools, the Branstad levels emphasize the

need for analysis tools for a complete programming environment. Several tools from

both studies are not provided in Toolpack. The major shortcoming of Toolpack is the

lack of an interactive debugger. A programming environment should increase produc-

tivity, as well as aid in producing quality software. No matter how carefully the

software is developed, debugging will be needed. An interactive debugger could shorten

the time required to locate errors.

The lack of a data dictionary is a serious shortcoming as well. A data dictionary is

particularly valuable for maintenance, and Toolpack’s users will inevitably need to

modify their software. Modifications can be made more quickly and reliably with a dic-

tionary that is kept up to date.

Other valuable test tools not included are an automatic test generator and a com-

plete test harness (command procedure or script to organize and automate test runs).

Creating test cases and organizing them manually is a time consuming and error prone

task. Toolpack does include a test coverage analyzer. The analyzer can be used to check

that the test cases provide complete coverage. A subnetwork checker would be unneces-

sary for individual programs, and not really essential for very small systems.

With Toolpack’s extensibility feature, the lack of any specific tool is not necessarily

a major shortcoming. The extensibility feature, discussed elsewhere in this paper, pro-

vides a capability to integrate additional tools into Toolpack. However, the features that

- 6 -

tie the system together, to provide the user a unified work environment, are necessary

for a completeness evaluation. Some of these features (e.g., the file system, the command
language, the interfaces to other systems), are described in other sections of this paper.

Greater availability of some of these tools during the test period would have enabled us

to understand more clearly the benefits of a complete, uninterrupted work session to

produce quality software.

4.0 EXTENSIBILITY
To understand how much effort is needed to integrate a tool into Toolpack, we

developed a software tool that computes the McCabe Cyclomatic Complexity Metric

for Fortran 77 programs. The tool, called METRIC, was developed externally to Tool-

pack, using only the tools available on Berkeley UNIX. Then the tool was integrated

into Toolpack.

METRIC used standard Fortran 77 I/O statements. Conversion to Toolpack

required replacing the Fortran I/O, format, and print with calls to Toolpack routines.

The process was much like converting an application to a new operating system or

access method.

4.1 Development of a New Tool

McCabe [MCCA82] represents the control structure of a program as a directed graph

and uses its cyclomatic number to estimate the complexity of the program. The
cyclomatic number (V) gives the maximum number of linearly independent paths in the

graph (G). It is calculated as

V(G) = e - n + 1,

where

e = number of edges,

n = number of nodes.

Combinations of paths will generate all possible paths through the graph. McCabe
shows that V(G) is equal to one plus the number of decision nodes in a program. To
calculate V(G) it is necessary to recognize the decision statements in a program and
count the number of conditions.

METRIC uses the parse tree and symbol table files built by the Toolpack parser,

ISTPR. No Toolpack routines were used; the parse tree and symbol table files were pro-

cessed exactly like any other files using standard FORTRAN 77 I/O. METRIC loads

the parse tree from a file built by ISTPR into internal arrays, then reads the arrays

sequentially to compute the complexity metric.

The Toolpack documentation provided an excellent description of the parser and the

parse tree format, and a copy of the context-free grammar used to generate the parser.

Having the grammar made it easy to write routines to recognize the statement types

needed to compute the metric (IF, IF-THEN, COMPUTED GOTO, etc.). After study-

ing the documentation, the Metric program was simple to write. It was completed in

two days, with a third day spent changing the output format and testing it against a

collection of files. After this we spent several more days running the metric against a

wide variety of source code. The only error encountered was a case where we neglected

to increment a statement type counter. The Toolpack lexical analyzer, ISTLX, and the

parser, ISTPR, functioned correctly on all tests. The total development time, including

studying Toolpack documentation, design, coding, and testing, was about two and a

half weeks of concentrated effort.

- 7 -

4.2 Conversion to Toolpack

METRIC was converted to use Toolpack routines in place of FORTRAN 77 I/O

statements. This new tool, called ”ISTMT” is callable from the Toolpack Command
Executor and has a user interface consistent with the other Toolpack tools. The conver-

sion was accomplished in three steps:

(1) Review documentation on Toolpack routines that can be used to access the parse

tree and symbol table. Since the documentation is generally good, this step went

quickly.

(2) Examine each function of the Metric program to see if it needed to be changed for

Toolpack portability. The term function refers to any block of code performing a

single operation, not just to Fortran functions and subroutines. In many cases a

simple one-to-one replacement was sufficient because of the similarity between the

data structures used in our program and in Toolpack. For example, our program

contained two subroutines that load the parse tree and symbol table files into inter-

nal arrays. Toolpack provides a single initialization routine that loads the parse

tree and symbol tables into data structures that can be accessed through 20 other

library routines. The only changes needed for initialization were to replace the

calls to our routines with a call to the Toolpack initialization routine. Our load

routines could then be deleted from the program.

(3) Replace the program functions by Toolpack-conforming code or Toolpack function

calls. Only minor changes were needed in most of the program. Creating format-

ted output using Toolpack routines was difficult because the routines do not pro-

vide a convenient way of tabbing.

The original METRIC accessed the parse tree and symbol table files through Fortran

unit numbers. To make ISTMT consistent with the other tools, we added a user inter-

face to accept file names from ’stdinh This was easily accomplished by modifying the

user interface routine from another Toolpack tool.

4.3 Evaluation of Conversion

Converting METRIC to Toolpack resulted in a significant decline in performance.

Executing the metric tool in the Toolpack embedded environment required over six

times as long as the Fortran 77 stand-alone version. The 6:1 ratio was constant across

parse tree files ranging in size from 350 to 6000 nodes.

Our Toolpack release contained a library of I/O routines that had been tailored to

Berkeley UNIX. These routines can be used to improve performance by replacing some

of the portable Toolpack routines. Using the UNIX I/O routines requires no changes to

source code. They are incorporated into the load module by the link editor. When
these I/O routines were linked into ISTMT, the program performed as well as the earlier

version that used standard Fortran I/O statements.

The output subroutine of METRIC required the most extensive changes and was t he

most difficult to convert to Toolpack. There is no straightforward replacement of

WRITE and FORMAT statements by Toolpack routines. Aligning output in columns

was particularly awkward compared with the simple tabbing provided in Fortran 77.

Toolpack usage might be simplified by providing Toolpack routines that more closely

resemble the standard Fortran. An alternative might be to provide print functions simi-

lar to those in UNIX. It might also be helpful to have some discussion of formatted out-

put included in the Toolpack documentation.

- 8 -

With the exception of output formatting, the conversion was easy and the basic

structure of the program was not changed. One of the few problems with the conver-

sion occurred when we neglected to declare one of the Toolpack functions as EXTER-
NAL. The compiler did not detect the error and the program did not crash when exe-

cuted. The call to the routine returned ’0’ rather than a correct value, so it appeared

that the Toolpack routine was not working properly.

After checking the Toolpack code and rechecking our code again, we realized that all

the code should be working and only then began looking for operating system and

compiler-related problems. This debugging could have been avoided with the help of a

static analysis tool to check interfaces and externals.

5.0 TOOL INTEGRATION
Toolpack is tightly integrated. Tools are single-function modules that use the out-

put of other tools whenever possible. For example, the lexical analyzer builds token and

comment files that are used by several other tools. The FORTRAN Intelligent

DilTerencer uses the token stream to ignore textual differences between files, while the

pretty-printer uses the token and comment files to reconstruct and reformat source

code. Figure 2 [OSTE83] shows the dependencies among tools.

One of the most interesting features proposed for Toolpack is the virtual file system.

The file system contains a representation of the dependencies between tools and their

input and output files. For example, if the parser is invoked, it requires a token stream

file. If a current version of the token file exists it is provided by the file system. If it

does not exist, or is not current, the system invokes the lexical analyzer to generate it

before calling the parser.

This tight integration provides many advantages. The user has no need to keep

track of intermediate file names while using the tools, and the virtual file system insures

SOURCE

Figure 2. Toolpack tool dependencies

- 9 -

that an up-to-date version of intermediate files will always be used.

The Toolpack version that we tested did not have a working virtual file system, so

we could not judge the value or performance of the file system design. We had previ-

ously examined a prototype version, ODIN [CLEM84]. ODIN required significant UNIX
operating system overhead because the virtual file system was implemented by creating

a new directory for each invocation of a tool. This resulted in directory nestings of

twenty or more levels and a heavy load on UNIX.

6.0 USER FACILITIES
The acceptance of any software system frequently depends upon its ’’user friendli-

ness” as much as any other quality.

6.1 Command display

Many of the tools provide a help menu that displays command syntax and function.

The displays are accurate, with minor exceptions. One shortcoming is the lack of con-

sistency in invoking help. For example, the command interpreter provides help in

response to ”??”, while the editor uses ”HEL” as the help command. There is no menu-
driven operation provided, but this is not as important in Toolpack as it would be in

many applications. The virtual file system and command interpreter, that are scheduled

to be included in future versions of Toolpack, would relieve the user of many decisions,

reducing the need for menu driven lead-through.

6.2 On-line documentation

Other than the help screens provided by the tools, there is no on-line documentation

such as that provided by the ”man(ual)” command in UNIX. This is to be expected in a

system still under development, and it is not a serious drawback. The printed documen-

tation provided with the system is complete and very readable.

6.3 Command syntax and abbreviation

The command format used in Toolpack is similar in style to that of UNIX: one to

three characters are used for most commands. Most of the abbreviations are intuitively

clear. There is no command completion facility. Command names must be spelled out

completely. Since the command names are short, the lack of a command completion

facility is not a problem.

The similarity to UNIX commands can be confusing at times. For example, the

Command Executor uses ”CD” for ’’Create Directory” while in UNIX, ”cd” stands for

’’change directory”.

6.4 Prompting
Invoking the tools generally requires a tool name followed by a set of parameters,

such as file names. An especially nice feature is the prompting provided by the tools.

For example, to run the lexical analyzer ISTLX, the user enters ’TSTLX” followed by

the names of Source, List, Error, Token and Comment files. If only ’TSTLX" is entered,

the tool will prompt for the missing file names. If some, but not all, of the file names

are entered, the tool will prompt for the missing names.

7.0 DOCUMENTATION
Quality of documentation is an important aspect of a software engineering environ-

ment, since even the best environment will be of little value without clear Instruct!

on how to take advantage of its capabilities. We found both the user documentation

- 10 -

and system documentation for Toolpack to be of uniformly good quality.

7.1 User Documentation

Although the Toolpack system was not complete when we evaluated it, and had not

been officially released, the version that we examined came with a reasonably complete

set of documents. There are documents for installation, for writing tools with Toolpack,

for understanding the Toolpack interface, for the editors, and for every tool. All are

clearly written and appear to be complete. We considered the documentation accept-

able for our use. Our only complaint was that documentation described tools not yet in

the Toolpack environment.

7.2 System Documentation

An extensible environment such as Toolpack needs good system documentation,

because users will want to add tools to the system. The documentation supplied to us

contained complete system library interface descriptions, written in a style similar to the

UNIX operating system manual pages: routine name, call structure, type and descrip-

tion of each parameter.

The code is well commented and the comments are meaningful. The library subrou-

tines generally contained more comments than the tools themselves. We found ratios of

roughly one comment for each three lines of code in the subroutine libraries, and one

comment for each six source lines in the tools.

We gained some practical experience using the system documentation when we
developed a tool on our own. The documentation was generally good, although in a

few cases the functions of a routine were not clear. In these cases we checked the source

code to determine what would happen. Generally, comments in the source code and
published documentation made it easy to understand the routines.

8.0 MAINTAINABILITY
One of the most important considerations in acquiring a system is the ease with

which it can be maintained. This note discusses maintenance aspects of Toolpack follow-

ing the outline provided in FIPS PUB 106, ’’Guideline on Software Maintenance”.

8.1 Single High-Order Language

Toolpack and the Toolpack software are written entirely in FORTRAN 77, except

for three C routines that provide bit shift functions and access to operating system date

and time. Because the file system routines are written in FORTRAN 77, they are easily

portable, but very inefficient. The Toolpack implementation we used had I/O routines

written in C that used UNIX I/O functions to improve performance. Testing showed
that these operating system dependent routines perform I/O about twenty times faster

than the routines that use FORTRAN for all I/O, so the additional maintenance burden

is worthwhile.

8.2 Coding Conventions

Programming style can have a significant impact on maintenance. The conventions

discussed below are recommended in FIPS 106 and are frequently recommended as ways
of improving the readability of source code.

(l) Keep it Simple - Most of the Toolpack modules are coded in a simple and straight-

forward style. The cyclomatic complexity metric described in [MCCA82] is also

useful to estimate the difficulty of understanding and testing a program. Table 5

and Table 6 show the complexity metric scores of Toolpack software. McCabe
[MCCA82] suggests that values of 10 or less represent reasonable complexity for a

- 11 -

module.

Library # Modules 1 to 10 11 to 20 > 20

access 44 40 (91%) 3 (7%) 1 (2%)
common 106 96

(90%) 9 (9%) 1 (1%)
direct 2 2 (100%) 0 0

embedded 2 2 (100%) 0 0

host 23 23 (100%) 0 0

pfs 91 89
(98%) 2 (2%) 0

string 37 28 (76%) 7 (19%) 2 (5%)

Table 5. COMPLEXITY METRIC: Toolpack Libraries.

Tool # Modules 1 to 10 11 to 20 > 20

isted 133 95 (71%) 26 (20%) 12 (9%)
istfd 20 13 (65%) 5 (25%) 2 (10%)
istlx 50 40 (80%) 6 (12%) 4 (8%)
istpl 58 44 (74%) 9 (16%) 6 (10%)

Table 0. COMPLEXITY METRIC: Selected Tools.

(2) Indentation - The Toolpack programs are nicely indented. In addition, a pretty-

print tool (ISTPL) is provided, making it easy to reformat source code.

(3) Use meaningful variable names - Since FORTRAN limits the length of identifiers to

six characters, it is not always possible to create good descriptive names for vari-

ables. The names used in Toolpack are generally meaningful, and the code is

sufficiently well commented to tell how a variable is used.

(4) Avoid similar variable names - Again, the length restriction of FORTRAN makes

this unavoidable sometimes, and some routines and variables do have similar

names. This is generally not a significant problem in reading the code.

(5) Pass values using parameters - This is done in most cases. It appears that COM-
MON blocks are used with restraint and only where there is a very good reason to

have them.

(6) Avoid non-standard language features - Great care was taken by the developers to

make Toolpack portable, and the code conforms to ANSI standard.

(7) Extensively comment the code - The code is well commented, as discussed in the

previous section on documentation.

8.3 Structured Modular Software

The Toolpack modules are small and use structured programming conventions.

Table 7 shows average module size for the subroutine libraries.

Library # Modules Lines Avg. Size

access 40 2,416 60

common 106 6,657 63

direct 2 84 44

embedded 2 226 113

host 23 453 20

pfs 91 4,969 55

string 37 2,305 62

Table 7. Average Module Size.

- 12 -

8.4 Standard Data Definitions and Data Dictionary

Toolpack does not have a data dictionary, but variable names are consistent.

9.0 PORTABILITY
Toolpack’s target users, mathematical software developers, use FORTRAN almost

exclusively with a wide variety of hardware and operating systems. Thus, one of the

major goals of the Toolpack project is to provide a system that creates totally portable

programs. The solution to this problem is a set of subroutines that replaces the stan-

dard FORTRAN I/O statements. All portable file system (PFS) software is written in

FORTRAN 77, so it is portable among hardware and operating systems. The documen-

tation clearly indicates which subroutines are likely to require changes for host depen-

dencies.

9.1 Portable Character Set

Toolpack provides its own character set which is mapped onto the host character set

by special subroutines. In theory, a program that works on an ASCII machine should

work on an EBCDIC machine, provided that data are represented in the Toe ipack char-

acter set. Since we had no hardware with an EBCDIC code set, we could not test this

feature.

9.2 Impact on Performance

An interactive environment should have good response time, but we noticed that I/O

was extremely slow using the portable Toolpack I/O routines. We wanted to examine

the value of using I/O routines tailored to the host operating system.

The Toolpack I/O routines move data character-by-character and execute conversion

routines to map from one character set to the other. This results in a severe perfor-

mance problem. We compared the portable I/O routines with a set of routines that per-

form the same function using UNIX system calls. A program that copies one file to

another using the portable routines actually becomes CPU-bound because of the deeply

nested subroutine calls. This testing is described below.

9.3 Performance Improvements
Toolpack contains I/O routines written entirely in FORTRAN 77 to aid portability.

Unfortunately, this results in very slow operation. To speed up processing some imple-

mentors have developed a library of I/O routines written in C that use the UNIX sys-

tem functions. These routines can be used to replace the F77 routines with no

modifications to a program’s source code. All that is necessary is to re-link the object

files using the ’’unixio” library.

We executed a set of tests to determine the degree of performance improvement pos-

sible through the operating system-dependent routines in ” unixio”. The improvement

found is quite spectacular, suggesting that it is well worth the effort to tailor a few rou-

tines to the host operating system.

To estimate the improvement in I/O processing, we wrote a small program that

copies an input file to an output file. The program was created by extracting and modi-

fying the code for the ”CP” instruction in the command executor. The program does

one file OPEN, one CLOSE, and uses GETLIN and PUTLIN to copy. Two executable

versions of the program were created: one was linked using only the F77 Toolpack rou-

tines for I/O; the other was linked with routines in the ’’unixio” library. Table 8 shows
the times of the two versions run on different length files.

file

length

(bytes)

F77 Toolpack

routines

(seconds)

unixio

routines

(seconds)

unixio/F77

times

(percent)

5,000 23.9 6.4 18.4

10,000 46.4 4.8 10.3

15,000 63.8 5.2 8.1

20,000 85.5 5.7 6.7

30,000 126.5 6.4 5.0

40,000 168.9 7.3 4.3

50,000 208.1 8.2 3.9

70,000 279.9 9.9 3.5

90,000 382.1 11.3 2.9

Table 8. I/O performance

The improvement factor obtained above will be only approximate. The programs in

Toolpack use different mixtures of I/O functions, but most will have one or more
OPENs, CLOSEs, many READs, and possibly many WRITEs. Furthermore, some I/O
subroutines are called for each character transferred and some are called at the end of

each line.

Profiling showed that these subroutine calls produced a bottleneck that kept the

transfer rate below 300 bytes/second. The situation was reversed with the ’unixio’ ver-

sion of the copy program. Since the CPU time between I/Os is less than the time for

two disk I/Os, the disk limits throughput. The operating system buffers and asynchro-

nous I/O prevent the disk from becoming a bottleneck on the file sizes we copied, which

explains why the transfer rate increases with file size.

Another interesting question is how the Toolpack unixio routines compare with the

performance of the UNIX FORTRAN 77 I/O library subroutines. We developed two
versions of a program that reads the parse tree file produced by ISTPR. The first used

standard FORTRAN I/O statements supplied by the UNIX FORTRAN I/O library.

The second used the Toolpack unixio routines. Both versions ran in approximately the

same amount of time, regardless of the file size.

10.0 RESOURCE USAGE
Toolpack users will normally need only a copy of the portable file system, command

executor and tools. The system manager will need to maintain a library of Toolpack

source code and documentation. The system library should also contain object code

modules that can be linked to create executable tools for the users.

The system library for the version that we tested requires about 11 megabytes of

disk storage. Future versions will have a larger set of tools and the command executor

will be replaced, so more space will be required.

The version of Toolpack that we tested is designed for a single user environment.

Each user must have a separate portable file system
,
because PFS files are accessed

through Toolpack system subroutines that contain hard-coded path names for PFS
files. Because the path names are different for each user’s PFS files, executable files can-

not be shared.

Shown below are the space requirements, in bytes, for the files needed by each T<x>l-

pack user. The sizes used are based on the recommendation in the Toolpack Installer's

Guide. These figures might be different depending on the user’s needs. A sampling <>f

Toolpack source code shows that one line of code requires an average of about 30 bytes.

- 14 -

At this size, the 10,000 block (256 bytes/block) PFS would hold about 81,000 lines of

code, after allowing for overhead. The size figures for the tools will of course vary

slightly with different versions.

System Files 3,357,845

Tools, executable 3,744,510

7,102,355

11.0 SUMMARY
NBS’s involvement with Toolpack developers has a long history. A session on

research for software environments at NBS’s Programming Environment Workshop
[BRAN78] was led by one of Toolpack’s developers. Our original plans for testing and

evaluating Toolpack were written from early technical publications describing Toolpack.

We worked incrementally, making iterations on our plans and examining improvements

in successive versions. We ended our review before this particular environment became

a completed product so we could not realize the full effect of a completed environment.

Our goals for this Toolpack involvement were to learn about software support

environments and how to evaluate them and to report back to the developers vnile they

worked on the environment. The first part of this summary discusses Toolpack

specifically and the second part provides more general information on environments and
evaluating them.

In our study we found that the individual tools and the integrating features of

Toolpack’s tools functioned well. Principles of software engineering have been employed

by Toolpack’s developers. The software quality features of maintainability, portability,

and documentation are excellent. In general, user facilities are provided and would be

useful to the Toolpack user. As a total programming support environment, our Tool-

pack version is incomplete, with many planned features missing.

The extensibility feature is key to the success of an environment. In Toolpack, tools

may be readily added so that lack of a specific analysis or text manipulation tool is not

a major shortcoming. Some of the tools proposed for Toolpack, such as a FORTRAN-
aware editor, are research ideas that once developed can be readily implemented. Lack

of higher level services that tie in to the basic system is a fundamental problem. For

example, the capability to execute a series of commands in one command sequence or to

check the need to rebuild files called by commands in the sequence would be highly use-

ful. Interfaces to other systems on the host computer also would be valuable. The
integration of the Toolpack programming tools themselves, (e.g., use of data from one

by the other), works well; the higher level integration services still need a lot of work.

Once these tools are ready for Toolpack, its extensibility feature should make them rela-

tively easy to add.

The contrast between the lack of completeness of Toolpack and the relative com-

pleteness of the operating environment on which we installed it emphasizes two ques-

tions. When should a software engineering environment be used? How should an

environment be evaluated for a specific use? Our Toolpack experience provided some

insights to these questions, based on the following considerations:

o capabilities already available to us vs those of Toolpack

- 15 -

o need for individual tools, based on evaluations in technical literature

o evaluation of other characteristics and features.

In our case, the operating system, UNIX, provided us a full range of services

included in Toolpack as well as many other utilities to which we were accustomed.

Among these services are background processing, profiling, access to UNIX utilities

without leaving the current utility, execution of a series of commands via shell scripts.

Toolpack may be most useful as an environment that can be built on top of an existing

operating system that does not have a full range of utilities. Toolpack provides some

features that are often not available on operating systems for large-scale scientific pro-

cessors. For organizations that do most of their development on UNIX, Toolpack’s

integration capabilities and file system may not be as valuable, although some of its

tools can be quite useful. We have used the scanner and parser in two projects since

this study was done and found the parse-tree access routines to be very convenient for

developing FORTRAN source code processing tools. An organization needs to evaluate

its existing capabilities against those provided by a software engineering environment.

In this study we concentrated primarily on the tool capabilities of Toolpack and used

technical evaluations to guide us. Others could apply this approach to determine the

minimum tool set needed for their project. The Hanson tool evaluation and the Bran-

stad levels could be used to compare a current operating environment to a software

engineering environment to determine which provides the greater capability. Next, the

capability could be weighed against the factors affecting how the capability is provided:

user facilities, documentation, resource usage, maintainability, extensibility.

There are different ways of looking at a software engineering environment. Some of

the features and characteristics to be considered in an evaluation are described in

another NBS study [HOUG85] that was completed after the Toolpack examination.

Other factors (e.g., cost benefit) need to be considered but discussion of those is outside

the scope of this document. Determining when to use a software engineering environ-

ment and what services it must provide is not an easy task. The steps suggested in this

summary may provide some guidance in performing such a task.

12.0 REFERENCES
[BRAN78]

Branstad, Martha A. and W. Richards Adrion, Editors, ”NBS Programming

Environment Workshop Report,” National Bureau of Standards, NBS SP 500-78,

June 1981.

[BRAN81]
Branstad, Martha A., W. Richards Adrion, and John C. Cherniavsky, "A

View of Software Development Support Systems,” Proceedings of the National

Electronics Conference

,

National Engineering Consortium, Inc, 1981.

[CLEM84]
Clemm, Geoffrey M., ”ODIN - An Extensible Software Environment Report and

User’s Manual,” University of Colorado, Boulder, CO, CU-CS-262-84, March, 108 1.

[FELD79]

Feldman, S.I., ’’Make - A Program for Maintaining Computer Programs," Softu <ire

Practice and Experience, Vol.9, 1979.

- 16 -

[FIPS106]
” Guideline on Software Maintenance,” Federal Information Processing Standards

Publication 106, National Bureau of Standards, 1983.

[HANS85]
Hanson, Stephen Jose and Richard R. Rosinski, ’’Programmer Perceptions of Pro-

ductivity and Programming Tools,” Communications of the ACM, Vol.28, No.2,

February, 1985.

[HOUG85]
Houghton, Raymond C., Jr., and Dolores R. Wallace, ’’Characteristics and Func-

tions of Software Engineering Environments,” National Bureau of Standards,

NBSIR 85-3250, Spetember, 1985.

[MCCA82]
McCabe, Thomas J., ’’Structured Testing: A Software Testing Methodology Using

the Cyclomatic Complexity Metric,” NBS Special Publication 500-99, National

Bureau of Standards, December, 1982.

[OSTE83]
Osterweil, Leon J., ’’Toolpack - An Experimental Software Development Environ-

ment Research Project,” IEEE Transactions on Software Engineering vol. SE-9,

No. 6, November, 1983.

[WALL86]
Wallace, Dolores R., ”An Experiment in Software Acceptance Testing,” National

Bureau of Standards, NBSIR 86-3407.

- 17 -

NBS-114A (REV. 2-80

U.S. DEPT. OF COMM. 3. Publication Date

JULY 1986
BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 86-3408

2. Performing Organ. Report No.

4. TITLE AND SUBTITLE

Study of a Prototype Software Engineering Environment

5. AUTHOR(S)

Dolores R. Wallace and D. Richard Kuhn

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 3. Type of Report & Period Covered

WASHINGTON, D.C. 20234

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

10.

SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document Includes a significant
bi bliography or literature survey, mention it here)

A prototype software engineering environment was studied as part of the program to

provide information to Federal agencies on software tools for improving quality and
productivity in software development and maintenance. The purpose of a software
engineering environment is to surround its users with software tools necessary for
systematic development and maintenance of software. This report presents the results of
the study of the prototype software engineering environment with respect to its features
The report also presents several factors to consider when evaluating a software
engineering environment.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon »i

documentation; extensibility; integration; maintainability; portability; programming
environment; software engineering environment; software support; software tools; user

facil ities.
13. AVAILABILITY 14. NO. OF

[X] Unlimited

Q3] For Official Distribution. Do Not Release to NTIS

PRINTED PAGES

23

[

—
1 Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402. IS. Price

[X] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

$9.95

UlCOuu*OC |04l*^90

